Skylights featured on Astronomy Picture of the Day

Scout Report Selection Webivore Selection SpaceCareers Selection

Skylights featured nine times on Earth Science Picture of the Day: 1 2 3 4 5 6 7 8 9


Photo of the Week. Mercury, seen in evening twilight, can be remarkably bright - and then it is gone. Courtesy of Robert H. Olley, with thanks.

Astronomy news for the two weeks starting Friday, May 20. 2016.

Phone: (217) 333-8789
Prepared by Jim Kaler.

Clear skies and thanks to Skylights' blogger visitor reader.

Go to STARS for previous stars of the week. Last week's Skylights is still available. Access Skylights' Archive and photo gallery. From the Sun to the Stars: the OLLI Lectures provides a linked, illustrated introduction to astronomy.
The Constellations has a linked list with locations and brightest stars. Constellation Maps show the locations of the constellations. The 170 Brightest Stars lists them through magnitude 3.00. For more on stars and constellations, visit Stellar Stories.
Tour the Milky Way. Watch a total eclipse of the Moon and an annular eclipse of the Sun. Moon Light presents scenic photos of the Moon. Go to MoonScapes for labelled telescopic images of the Moon and other lunar information.
See the Moon move and pass just below Nu Virginis. Watch planets move against the background stars. See a classic proof of the curvature of the Earth with a "hull down" series. Visit Measuring the Sky to learn about the celestial sphere.
Admire sunsets, rainbows, and other sky phenomena in Sunlight. Read the illustrated Day Into Night on the phenomena of the sky See the The Aurora and the Midnight Sun. See and understand the ocean tides.
Enjoy Our Complex Universe: A Human Understanding through Art, with 12 illustrations. Advances in Astronomy, 1989-2011. Take a ride aboard Asteroid 17851 Kaler (1998 JK). Look for Books about the sky and stars.


ASPSupport science literacy by joining the Astronomical Society of the Pacific, an international organization that is among the world's premier providers of astro education. Get Mercury and a variety of other benefits.

Presenting three audio courses with 70 to 100-page study guides, narrated and written by Jim Kaler.
Heavens Above: Stars, Constellations, and the Sky from Recorded Books. Astronomy: Earth, Sky, and Planets, is available from Recorded Books. Astronomy: Stars, Galaxies, and the Universe, is also now available from Recorded Books.
Astronomy: Earth, Sky, and Planets is published as Vault of the Heavens: Exploring the Solar System's Place in the Universe by Barnes and Noble.

Enjoy Our Complex Universe:A Human Understanding through Art, with 12 illustrations.

Read "Heaven's Touch: From Killer Stars to Seeds of Life, How We Are Connected to the Universe," Princeton University Press, now in Chinese translation.

SSTo learn about stellar spectra, read STARS AND THEIR SPECTRA: An Introduction to the Spectral Sequence, Second Ed., with two new chapters and 140 new illustrations, Cambridge University Press (UK or North America), 2011.

Read From the Sun to the Stars: the OLLI Lectures, which provides a linked, illustrated introduction to astronomy.

SSNEWEST! FIRST MAGNITUDE: A Book of the Bright Sky, World Scientific, 2013. Read the interview with Jim Kaler.

NEW! Read The Queen in Stellar Stories.

The next skylights will appear June 3.

We begin with the Moon late in its waxing gibbous phase just a day shy of full, which takes place the evening of Saturday, May 21, with the Moon rising to the left of Mars and above Antares and Saturn, the quartet making a ragged box. By the following evening the Moon will be to the left of Saturn, with Antares off to the right. The Moon then drifts through its waning gibbous phase, which ends at third quarter on Sunday the 29th, the near-perfect phase taking place near sunrise in North America with the Moon high to the south. We then get to watch the waning crescent, which closes out our fortnight, new Moon taking place on Saturday, June 4. The morning of Friday the 3rd the super-thin crescent will rise in morning twilight just beneath Mercury, providing a fine way to find the little planet. Binoculars would be a good idea. Having passed apogee on Wednesday the 18th, the Moon spends the entire fortnight moving slightly, about 11 percent, closer to Earth, passing perigee (nearest to Earth) on Friday the 3rd.

Already west of the celestial meridian as the sky darkens, Jupiter dominates the evening, setting roughly an hour past local midnight. Already up in the southeast in evening twilight, Mars and Saturn make a fine pair, Mars in fast retrograde (to the west against the stars), Saturn retrograding much more slowly to the east of Mars and to the northeast of Antares, the trio making a very pretty sight, especially when the Moon gets out of the way. Mars is in opposition to the Sun on Sunday the 22nd, Saturn's opposition following on Friday the 3rd. At those special times, the planets will rise at sundown, cross the meridian to the south at local midnight (approximately 1 AM Daylight), and set at sunrise. Mars, now very bright and rivalling Jupiter, undergoes closest approach to the Earth for this orbital round on Monday the 30th, when it will be half an Astronomical Unit (Earth-Sun distance), 46 million miles, or 75 million kilometers, from us. That closest approach is 8 days after opposition is the result of the eccentricity of the Martian orbit. Not to be entirely left out, Venus goes through superior conjunction with the Sun on June 6.

To the southwest of Jupiter lies Alphard, the luminary of Hydra, the Water Serpent, the name from Arabic meaning "the solitary one," which has nothing to do with a snake. To the northeast of the giant planet is Denebola, Leo the Lion's number two, the name referring to the beast's tail, both stars about the brightness of Polaris, the North Star, which is at the end of the handle of the Little Dipper.

STAR OF THE WEEK: CHI-1 HYA (Chi-1 Hydrae) Odd coincidences abound among the stars, probably because there are so many of them. Chi-1 Hydrae (in Hydra, the very long Water Serpent) lies just 8.4 minutes of arc almost exactly west of Chi-2, seven-tenths the separation between Mizar and Alcor in Ursa Major. The latter two are pretty clearly a real pair (Mizar itself quadruple, Alcor double). Chi-1 and Chi-2 Hya, on the other hand, have nothing to do with each other except angular proximity. What is a bit weird is that both are doubles with confused memberships. At a distance of 141 light years (give or take just 2), a fifth the distance to Chi-2, Chi 1 is a fifth magnitude (4.94) class F (F3) subgiant binary with nearly equal components (which is not all that unusual), the individuals both of magnitude 5.7 and separated by a mere two or so tenths of a second of arc. From "Burnham's Celestial Handbook," as of 1978: "This is a binary system with one of the shortest periods known for any visual pair, but too close for small telescopes." The two go around each other with a period of just 7.60 years.

Chi-1 Hydrae The orbit of Chi-1 B around Chi-1 A (at the cross) is not only fairly eccentric (e=0.35) but is tilted at a high angle to the sky, 95 degrees, which together give the orbit its skinny look. The tilt is almost enough to make the double into an eclipsing binary. In reality, each star has its own orbit about a common center of mass, though for this pair they are almost identical. Note the scale: the stars at best are only a few tenths of a second of arc apart, the two taking only 7.603 years to go around each other at an average distance of 5.9 Astronomical Units (3.9 AU at periastron, 8.0 at apastron). They were physically (though not on the sky) last closest together late in 2013. From the Sixth Catalog of Orbits of Visual Binary Stars , W. I. Hartkopf and B. D. Mason, US Naval Observatory Double Star Catalog, 2006.

The orbit shows them to average 5.92 Astronomical Units apart, an eccentricity of 0.35 taking them from as close together as 3.9 AU to as far as 8.0 AU. Rather obviously a planet could not exist unless it orbited both of them very far away. Using Kepler's third law, the sum of stellar masses is 3.8 Suns, which makes them 1.8 solar masses each. We can check the calculation with evolutionary masses derived from theory. With temperatures of 6750 Kelvin, the duo radiates by far most of its light in the optical spectrum, each shining with the light of 7.7 Suns, from which we derive radii of 2.0 Suns and masses of 1.6 times solar, which sum to 3.2 Suns, 84 percent that of the sum of the orbital masses. Given that the orbital masses are dependent on the mean orbital radius cubed, the agreement is quite good; squeezing the orbit down by just four percent makes a perfect match. Published projected equatorial rotation velocities differ by a factor of 2! Adoption of the later measure of 93 km/s applied to either or both stars gives a rotation period of under 2.0 days. Theory, which this binary well supports, shows that the stars, while not actually subgiants that have run out of core hydrogen, are getting close, with ages that approach two billion years. All this looks pretty good. The problem is the discovery of sixth magnitude Chi-1 Hydrae C at a separation of 18 seconds of arc from the Chi-1 AB pair. But that would bring the visual magnitude of the trio to 4.62, which it very much is not. Since "C" has been observed just once, we can only conclude that the "discovery," or listing, is bogus and that "C" does not exist. To add to the confusion, Chi-2 has therefore been called Chi-1 D, implying a connection that also does not exist Such are the perils of double-star astronomy. (Thanks to Bill Hartkopf for discussion.)

Valid HTML 4.0! Copyright © James B. Kaler, all rights reserved. The written contents and (unless otherwise specified) the photograph are the property of the author and may not be reproduced in whole or in part without the author's consent except in fair use for educational purposes.